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A midisuperspace model is a field theory obtained by symmetry reduction of a
parent gravitational theory. Such models have proven useful for exploring the
classical and quantum dynamics of the gravitational field. I present three recent
classes of results pertinent to canonical quantization of vacuum general relativity
in the context of midisuperspace models. (1) I give necessary and sufficient
conditions such that a given symmetry reduction can be performed at the level
of the Lagrangian or Hamiltonian. (2) I discuss the Hamiltonian formulation of
models based upon cylindrical and toroidal symmetry. In particular, I explain
how these models can be identified with parametrized field theories of wave
maps; thus a natural strategy for canonical quantization is available. (3) The
quantization of a parametrized field theory, such as the midisuperspace models
considered in (2), requires construction of a quantum field theory on a fixed (flat)
spacetime that allows for time evolution along arbitrary foliations of spacetime.
I discuss some recent results on the possibility of finding such a quantum field
theory.

1. INTRODUCTION

A time-honored strategy for extracting information from a field theory

is to restrict attention to states of the system that possess some degree

of symmetry. This strategy was applied to canonical quantum gravity by

DeWitt in 1967 [1]. He studied the canonical quantization of spacetimes
with matter that were homogeneous and isotropic. This symmetry assump-

tion turns an intractable problem in quantum field theory into a straightfor-

ward quantum mechanical problem that can be solved completely, and

illuminates some of the qualitative features of the full theory. A couple

of years later, Misner dropped the isotropy assumption and studied classical
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and quantum dynamics of homogeneous spacetimes [2]. The field of

quantum cosmology was born.

When using a description of gravitational dynamics based upon metrics,
it is reasonable to try to represent the quantum states of the gravitational

field as functions of three-dimensional spatial geometry [1]. This domain for

the quantum gravitational state function has come to be known as

ª superspace.º Naturally, if one restricts attention to a small subspace of

superspace, such as is done in quantum cosmology, one is dealing with a

ª minisuperspace.º The minisuperspace models of gravity consider spacetimes
with so much symmetry that there are only a finite number of degrees of

freedom left in the gravitational field. A few years after DeWitt and Misner

began the minisuperspace/quantum cosmology program, KucharÏ went one

step further [3]. He considered the quantization of spacetimes admitting

cylindrical symmetry. This symmetry assumption was strong enough for him

to make progress in understanding canonical quantum gravity, but weak
enough so that the number of degrees of freedom in the gravitational field

were still infinite. Indeed, the symmetry assumptions made in ref. 3 reduce

the gravitational dynamics to that of Einstein±Rosen waves. Borrowing from

the vernacular of the fashion world, KucharÏ proposed to call this model a

ª midisuperspaceº model. Whether discussing minisuperspaces or midisupers-
paces, one is referring to symmetry reductions of the gravitational field.

Minisuperspaces lead to mechanical models; the reduced field equations

become ordinary differential equations. Midisuperspaces define field theories;

the reduced field equations remain partial differential equations.

Since the pioneering work of DeWitt, Misner, and KucharÏ , the amount

of effort spent in studying classical and quantum properties of symmetry
reductions of general relativity (and other field theories) has been enormous.

My purpose here is not to review this sizable body of literature, but rather

to highlight some recent developments in the area. Of course, the choice of

material has a strong editorial bias. Most of the work that I will discuss was

performed in collaboration with others. In particular I have benefited from

working with Ian Anderson, Mark Fels, Joseph Romano, and Madhavan
Varadarajan on the topics discussed below. Needless to say, I take credit for

the inevitable weaknesses in the presentation.

The following three topics will be discussed here.

1. The Symmetric Criticality Principle. What are necessary and sufficient

conditions such that the canonical structure of a field theory induces a canoni-
cal structure on a given symmetry reduction of the theory? This issue is

clearly relevant when one is studying canonical quantization of a mini- or

midisuperspace, since one needs to know what is the Hamiltonian, what are

the constraints, what are the Poisson algebras of various functions, etc. The
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issue boils down to the question: When can one symmetry-reduce a classical

field theory via a symmetry reduction of the Lagrangian? In the mathematics

literature this question has appeared as the question of the validity of the
ª symmetric criticality principleº [4].

2. Two-Killing-Vector Midisuperspaces. I will consider some relatively

recent results on the Hamiltonian structure of a popular class of midisuper-

space models in which one assumes cylindrical symmetry or toroidal symme-

try. These are examples of ª two-Killing-vector models.º The results presented

are generalizations of the work of KucharÏ , and lead to a nice scheme for
canonical quantization.

3. Quantization on Curved Surfaces. The models considered in (2) allow

one to turn the problem of finding a gauge-invariant canonical quantization

of the two-Killing-vector models into the problem of quantizing certain

parametrized field theories. The problem of quantizing parametrized field

theories is an interesting problem in its own right. Dirac seems to have been
one of the first to study this problem [5]; he called it the problem of quantiza-
tion on curved surfaces. I will present some salient results in this area.

2. THE SYMMETRIC CRITICALITY PRINCIPLE

Symmetry reduction of a classical field theory takes place in three steps.

First, one specifies a group action with respect to which the fields are to be

invariant. Second, one constructs the most general field admitting the chosen

group action as a symmetry. This is the invariant field. Normally, the invariant

field involves arbitrary functions of one or more variables. These are the

reduced fields, which define the mini- or midisuperspace. Third, one evaluates
the field equations on the invariant fields, thus obtaining the differential

equations (or perhaps algebraic equations) for the reduced fields. These

equations are the reduced field equations for the mini- or midisuperspace.

All of us at one time or another have performed symmetry reduction in

this way, e.g., using time translation and rotational symmetry to find the

Schwarzschild solution of the vacuum Einstein equations.
Normally, the field equations can be derived from a Lagrangian, in

which case there is a very tempting shortcut one might try to obtain the

reduced field equations. One can try substituting the invariant field into the

Lagrangian, thereby obtaining a reduced Lagrangian for the reduced fields.

One can then compute Euler±Lagrange equations from this reduced Lagran-

gian and obtain a set of reduced field equations. The only difficulty with this
shortcut is that there is no guarantee the reduced Lagrangian will yield the

correct reduced field equations! This problem is particularly vexing when

studying quantization of mini- or midisuperspaces since one would like to

assume that restriction of the Lagrangian (or Hamiltonian) to the invariant
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fields yields the correct Lagrangian (or Hamiltonian) for the mini- or

midisuperspace.

A formal statement of the issue at hand is as follows. Let 4 be the space
of metrics g on a manifold M. Let S: 4 ® R be an action functional invariant

under some transformation group G: 4 ® 4. Let 4Ãbe the space of G-

invariant metrics gÃand let SÃ: 4Ã® R be the restriction of S to the invariant

metrics. We want to know if the critical points of SÃdefine critical points of

S, that is,

d S

d g Z 4Ã 5 0 Û
d SÃ

d gÃ
5 0 (2.1)

Put simply: we want to know if symmetric critical points are critical symmetric

points. If this is the case, following Palais, we say that the symmetric criticality
principle holds [4]. In essence, if the symmetric criticality principle holds,

then one can expect to describe the reduced field theory using the reduced

Lagrangian. Let us look at a couple of examples.

First we consider the spherical symmetry reduction of vacuum general
relativity. We restrict attention to spacetimes admitting a three-dimensional

isometry group G that is isomorphic to SO(3) and has orbits that are spacelike

and diffeomorphic to two-dimensional spheres. It follows that there will exist

(nonunique) G-invariant functions, t P ( 2 ` , ` ) and r P (0, ` ), which can be

used as local coordinates and such that the spacetime metric g takes the form

g 5 A(r, t) dt ^ dt 1 B(r, t) dt ^ dr 1 C(r, t) dr ^ dr 1 D(r, t) d V

(2.2)

Here the group orbits are labeled by t and r, d V is the standard metric on

the unit 2-sphere, and A, B, C, D are arbitrary functions (aside from the

conditions required to keep the metric nondegenerate and to give it the correct

signature). We obtain the conditions for the invariant metric (2.2) to define
a vacuum spacetime by requiring that this metric have vanishing Einstein

tensor Gab. This requirement yields a system of 10 PDEs in two independent

variables for the four functions A, B, C, D:

Gab[A, B, C, D] 5 0 (2.3)

but it turns out that only four of the equations are independent. Thus we

obtain four reduced field equations for four reduced fields, from which one

can obtain the Schwarzschild solution, etc. Now we can try our shortcut.
Substitute the metric (2.2) into the Einstein±Hilbert Lagrangian density,

L 5 ! gR, where R is the scalar curvature of the metric. Up to an irrelevant

factor coming from the area element on the unit 2-sphere, the result is a

Lagrangian density LÃfor the reduced fields. The Euler±Lagrange equations
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for the reduced fields obtained from LÃare a system of four PDEs in two

independent variables:

d SÃ

d A
5

d SÃ

d B
5

d SÃ

d C
5

d SÃ

d D
5 0 (2.4)

The equations (2.4) can be shown to be equivalent to the equations (2.3), so the

reduced Lagrangian LÃcorrectly describes the spherically symmetric vacuum

spacetimes. Thus the symmetric criticality principle holds for spherically

symmetric reductions of the vacuum Einstein equations.

The symmetric criticality principle for the spherical symmetry reduction
of general relativity was used by Weyl to derive the Schwarzschild solution

[6]. The principle is also being used in recent approaches to canonical quanti-

zation of midisuperspace models of spherically symmetric spacetimes (see,

e.g., ref. 7).

As another example, let us consider spatially homogeneous solutions to

the vacuum Einstein equations. These minisuperspace cosmological models
are obtained by restricting attention to spacetimes that admit a three-dimen-

sional group G of isometries with orbits S that are leaves of a codimension-

1 spacelike foliation of spacetime. We label the homogeneous hypersurfaces

by t. The invariant metrics take the form

g 5 a (t)dt ^ dt 1 b i (t)dt ^ v i 1 g ij(t) v i ^ v j (2.5)

where a , b i , and g ij 5 g ji are arbitrary functions of t (modulo nondegeneracy

and signature of the metric), and v i, i 5 1, 2, 3, form a basis of G-invariant

1-forms on S . The equations of motion for homogeneous vacuum metrics

are a system of 10 ODEs for the 10 functions a , b i , and g ij obtained by

demanding that the metric (2.5) have vanishing Einstein tensor:

Gab[ a , b , g ] 5 0 (2.6)

Thus we obtain 10 reduced equations of motion for the 10 reduced fields.

As before, we can try to obtain the reduced equations of motion from the

reduced Lagrangian LÃ. Substituting (2.5) into the Einstein±Hilbert Lagrangian

and computing the Euler±Lagrange equations for the reduced fields a , b i ,

and g ij we again obtain 10 ODEs:

d SÃ

d a
5

d SÃ

d b i

5
d SÃ

d g ij

5 0 (2.7)

The equations (2.7) are equivalent to (2.6) only if the structure constants Cab
c

of G satisfy

Cab
b 5 0 (2.8)
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Homogeneity groups satisfying (2.8) have been given the picturesque name

class A. [A more descriptive term for groups satisfying (2.8) is unimodular
since such groups admit a biinvariant volume form.] If G does not satisfy
(2.8), it is, of course, called class B. We see that the class A models obey

the symmetric criticality principle, but that the class B models do not. Thus

the Einstein±Hilbert variational principle for the Einstein equations fails to

induce a variational principle for the class B homogeneous cosmological

models. This annoying feature of homogeneous class B minisuperspaces has

been known for a long time (see, e.g., ref. 8 and 9 for a discussion). Needless
to say, canonical quantization of minisuperspaces describing homogeneous

cosmologies has been studied only for the class A models.

Experience with examples such as described above suggests that the

validity of the reduced Lagrangian (or Hamiltonian) for a given mini- or

midisuperspace has to be checked on a theory-by-theory and group-by-grou p

basis. Fortunately, it is possible to give general conditions that are necessary
and sufficient for the symmetric criticality principle to be valid for any field

theory. Palais gives results along these lines in the context of G-invariant

functions on Banach manifolds [4]. It is possible to give a somewhat more

detailed set of conditions by specializing to local Lagrangian field theories

[10]. Here I would like to give an informal statement of the main result from
ref. 10 on symmetric criticality for local gravitational field theories. To state

this result we need the following data. The symmetry group being used for

reduction is G. The orbits of G in spacetime M have dimension q. The

isotropy (or stabilizer) group of a point x P M is Hx , G. It is assumed that

the isotropy group of any given point is a subgroup of the Lorentz group

since this is a necessary and sufficient condition for the (local) existence of
a G-invariant metric [10]. The vector space of symmetric rank-2 tensors at

a point x P M is denoted by Vx . The vector space of Hx-invariant symmetric

rank-2 tensors at a point x of spacetime is denoted by V H
x . The annihilator

of V H
x (linear functions on V that vanish on V H ) is denoted by (V H

x )0. Finally,

the Lie algebra cohomology of G relative to H at degree q is denoted by

*q(G, H ). This is the space of H-invariant closed modulo exact q-forms on
the group manifold for G.

Theorem. The principle of symmetric criticality is valid for any metric

field theory derivable from a local Lagrangian density if and only if the

following two conditions are satisfied at each point x in the region of spacetime

under consideration.
(1) *q(G, Hx) Þ 0.

(2) (V H
x )* ù (V H

x )0 5 0

The appearance of these two conditions can be understood from the two

possible ways that symmetric criticality can fail. Recall that the first variation
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of an action functional is the sum of (i) a boundary term coming from an

integration by parts, and (ii) a volume term in which the Euler±Lagrange

expression occurs. The reduced Euler±Lagrange equations fail to define
solutions of the original Euler±Lagrange equations if (a) the boundary term

of the original variational expression fails to reduce to the boundary term

for the reduced Lagrangian and/or (b) any (nontrivial) field equations coming

from the volume term of the original Lagrangian disappear in the volume term

for the reduced Lagrangian. If (a) occurs, then the reduced Euler±Lagrange

equations pick up additional terms that render the Euler±Lagrange equations
incorrect. If (b) occurs, then there will be nontrivial field equations that

simply do not arise from the reduced Lagrangian. Condition (1) in the theorem,

which is equivalent to requiring that the group orbits admit a bi-invariant

volume form, is necessary and sufficient to guarantee that (a) will not occur.

Condition (2) is necessary and sufficient to prevent (b).

Remarks. c When I gave this talk at the workshop Quantum Gravity in

the Southern Cone II I left out the second condition (2) in the statement of

the theorem. At the time, we thought that the existence of a G-invariant

metric would prevent problem (b) from arising. Problem (b) is absent for

field theories of a Riemannian metric, and condition (2) is not needed in that
setting. But in general, and in particular for field theories of a Lorentzian

metric, problem (b) can arise and condition (2) is needed.

c The conditions needed for the validity of the symmetric criticality

principle may seem a little arcane, but they are in fact quite easy to check

using elementary linear algebra and some manipulation of structure constants

for the symmetry group.
c The theorem above gives conditions for validity of reduction of any

Lagrangian. It is possible for the two conditions to fail for a given Lagrangian

and still have symmetric criticality holding for that particular Lagrangian .

The utility of the theorem is that it allows one to take a given symmetry

reduction and check a priori whether one can correctly symmetry-reduce at

the level of the Lagrangian, irrespective of the choice of Lagrangian. Perhaps
I should also point out that even if the symmetric criticality principle fails

and the reduced Lagrangian does not correctly describe the reduced field

equations, this does not mean that the reduced field equations do not admit

a variational principle of some other type.

c It can be shown that the conditions of the theorem are satisfied if G
is compact. In particular, it is always safe to reduce the Lagrangian via
spherical symmetry (a fact often taken for granted in the physics literature!).

If the group action is free, that is, has no (nontrivial) isotropy subgroups,

then condition (2) in the theorem is trivially satisfied and condition (1) reduces

to the statement that the Lie group is unimodular (2.8). Thus we recover the
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results of our two examples given above, and we see that these results are

not specific to the Einstein field equations.

c While the theorem above is stated in the context of a local field
theory of a metric, there is a straightforward generalization of the theorem

to essentially any type of local field theory [4, 10].

3. TWO-KILLING-VECTOR MIDISUPERSPACES

Let us now focus on a particular class of midisuperspace models obtained

by assuming the existence of two commuting Killing vector fields for the

spacetimes of interest. These models have an infinite number of degrees of

freedom and are equivalent to field theories in two dimensions. Thus these are
among the simplest of the midisuperspaces. We shall present the Hamiltonian

formulation of these models and indicate that they are mathematically equiva-

lent to parametrized field theories. Thus their quantization can be viewed as

an instance of Dirac’ s problem of quantization on curved surfaces.

We will study two of the ª two-Killing-vector models,º namely, a cylindri-

cally symmetric model and a toroidally symmetric model. The former is a
generalization of the Einstein±Rosen wave model of KucharÏ [3]. The latter

is the ª Gowdy modelº [11]. We begin by defining the spacetime manifold

and symmetry group.

Cylindrical Symmetry. Here the spacetime manifold is M 5 R 3 R3

with cylindrical coordinates (t, x, f , z), where

t P ( 2 ` , ` ), x P (0, ` ), f P (0, 2 p ), z P ( 2 ` , ` ) (3.1)

The symmetry group is generated by a translation, a rotation, and a discrete

Z2. The translation and rotation are generated by the vector fields ( - / - z,
( - / - f )),

f ® f 1 const modulo 2 p , z ® z 1 const, (3.2)

and the discrete transformation is

(t, x, f , z) ® (t, x, 2 p 2 f , 2 z) (3.3)

Toroidal Symmetry. Here the spacetime manifold is M 5 R 3 T3 with

coordinates (t, x, y, z), where

t P ( 2 ` , ` ), x, y, z P (0, 2 p ) (3.4)
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Note that each of (x, y, z) is an angular coordinate on a 3-torus. The symmetry

group is generated by two rotations on the torus and a Z2 again. The rotations

are generated by the vector fields ( - / - y, ( - / - z)),

y ® y 1 const modulo 2 p , z ® z 1 const modulo 2 p , (3.5)

and the discrete transformation is

(t, x, y, z) ® (t, x, 2 p 2 y, 2 p 2 z) (3.6)

In each case the discrete symmetry is designed to force the orthogonal
distribution associated with the Killing vector fields to be integrable. In the

usual terminology, we are considering spacetimes admitting two commuting

Killing vector fields generating an ª orthogonally transitiveº group action.

It is straightforward to find the general form of the metrics admitting

the toroidal and cylindrical symmetry groups. We present their line elements
in the coordinates described above [12].

Cylindrical Symmetry. In this case

ds2 5 [ 2 (N ’ )2 1 e g 2 c (N x)2] dt2 1 2e g 2 c N x dt dx

1 e g 2 c dx2 1 F 2e 2 c d f 2 1 e c (dz 1 c Ä d f )2 (3.7)

Each of the six fields entering into the components of the metric are functions

of t and x only. We assume that F . 0, that the spacetime gradient of F is

everywhere spacelike, and that N ’ . 0. The reduced fields (N ’ , N x, g , F ,

c , c Ä ) are otherwise unrestricted. The variables N ’ and N x are the lapse and

shift for a symmetry compatible foliation (see ref. 13 for a discussion of the
3 1 1 formalism). The Einstein equations are six nonlinear PDEs for the six

reduced fields. The ª true degrees of freedomº of the model can be identified

with the fields ( c , c Ä ) [12].

Toroidal Symmetry. In this case

ds2 5 [ 2 (N ’ )2 1 e g 2 c (N x)2] dt2 1 2e g 2 c Nx dt dx

1 e g 2 c dx2 1 F 2e 2 c dy2 1 e c (dz 1 c Ä dy)2 (3.8)

Each of the six fields entering into the components of the metric are functions

of t and x only. We assume that F . 0, that the spacetime gradient of F is

everywhere timelike, and that N ’ . 0. The reduced fields (N ’ , Nx, g , F , c ,

c Ä ) are otherwise unrestricted. The variables N ’ and N x are the lapse and
shift for a symmetry-compatible foliation. The Einstein equations are six

nonlinear PDEs for the six reduced fields. The ª true degrees of freedomº of

the model can be identified with the fields ( c , c Ä ) subject to a single ª zero-

momentumº constraint and a single ª point particleº degree of freedom [12].
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Let us check that the two-Killing-vector midisuperspace models acquire

a Hamiltonian structure from the Hamiltonian structure of the full theory

(see refs. 13, 21, 15, and 14 for a discussion of Hamiltonian gravity). This
will follow if the symmetric criticality principle is valid for the cylindrical

and toroidal symmetry reductions. We therefore check whether the two condi-

tions from the theorem of the last section are satisfied for these symmetry

reductions. That the first condition is satisfied follows from the fact that the

group orbits admit an invariant volume form, e.g., d f Ù dz (cylindrical

symmetry) or dy Ù dz (toroidal symmetry). That the second condition is
satisfied follows from the fact that the representation of the (Z2) linear isotropy

group at any point of the spacetime manifold is fully reducible. This second

condition can also be checked by direct computation of the spaces (V H)*

and (V H)0. We conclude that the symmetric criticality principle applies to

cylindrical or toroidal symmetry reductions of any metric field theory. There-

fore, it is permissible to derive the Hamiltonian formulation of these models
by restricting the full Hamiltonian formulation to the chosen midisuperspace.

This justifies the usual procedure, often found in the literature, in which the

general form of the invariant metric is substituted into the ADM action to

obtain the ADM action for the reduced theory.

It is possible to give a more or less unified treatment of the Hamiltonian
formulation of the models we are considering. The most succinct way to do

this is to display the phase space (or ª ADMº ) action functional:

S 5 # MÃ

( p F F Ç 1 p g g Ç 1 p c c Ç 1 p c Ä c Ä 2 N ’ * ’ 2 N x*x)

1 boundary term. (3.9)

The structure of (3.9) is as follows. The integral is over the space of orbits

MÃ [with coordinates (t, x)] of the Killing vector fields. Thus MÃ 5 R 3 R+

in the cylindrical symmetry case, and MÃ 5 R 3 S1 in the toroidal symmetry

case. The critical points of this action functional define vacuum spacetimes
with the prescribed symmetries. To find these critical points, the action is to

be varied with respect to the midisuperspace fields ( g , F , c , c Ä ), their conjugate

momenta ( p g , p F , p c , p c Ä ), along with the lapse and shift (N ’ , Nx). The latter

two variations lead to the (symmetry reduced) Hamiltonian and momen-

tum constraints:

* ’ : 5 e( c 2 g )/2 F 2 p g p F 1 2 F 9 2 F 8 g 8 1
1

2
( F c 82 1 F 2 1 p 2

c )

1
1

2
( F e 2 2 c p 2

c Ä 1 F 2 1e2 c c Ä 82) G 5 0, (3.10)
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*x: 5 2 2 p 8g 1 p g g 8 1 p F F 8 1 p c c 8 1 p c Ä c Ä 8 5 0 (3.11)

where a prime indicates a derivative with respect to the spatial coordinate x.

The boundary term indicated in (3.9) only arises in the cylindrically symmetric

case and is needed to render the action and Hamiltonian differentiable with

appropriate boundary conditions. See ref. 12 for details on this point.

The appearance of a pair of constraints on the phase space of the

midisuperspace models reflects the presence of a gauge symmetry of the

models with respect to a two-dimensional diffeomorphism group. This is the

group of diffeomorphisms of the symmetry-reduced spacetime manifold, i.e.,
the space of orbits MÃof the Killing vector fields. Indeed, one can check by

direct computation that the Poisson algebra of the constraint functions (* ’ ,

*x) is the Dirac algebra of hypersurface (really, curve) deformations in a

two-dimensional spacetime, which is the Hamiltonian expression of general

covariance [15]. As in the full theory of gravity, the Hamiltonian is (up to

surface terms) built from the constraint functions, so that the constraint

functions generate (almost all) of the dynamics. It is the existence of a

Hamiltonian and momentum constraint that makes the two-Killing-vector

midisuperspaces such excellent models of canonical quantum gravity.

Unfortunately, the constraint functions * ’ and *x , as they stand, are

still rather intractable from the point of view of quantization. A straightforward

approach aÁ la Dirac [5] (see also refs. 1 and 3) would go as follows. Build

the state space of the quantum theory as a space of functionals of the midisu-

perspace variables ( g , F , c , c Ä ) modulo spatial (x) diffeomorphisms. By taking

the quotient with respect to the action of spatial diffeomorphi sms we take

into account the quantum form of the momentum constraint (3.11). What is

left is the midisuperspace version of the Wheeler±DeWitt equation, in which

one imposes the quantum form of the constraint (3.10), say, by trying to

represent the midisuperspace variables as multiplication operators, represent-

ing their conjugate momenta as functional derivative operators, and then

demanding that this quantization of * ’ annihilate physical states. No one

seems to have made any progress using this most direct of approaches. One

might say that the two-Killing-vector midisuperspaces model the situation

in vacuum geometrodynamics all too well. To my knowledge, progress on

these models has been made using three alternative approaches.

First, one can translate the midisuperspace model into the phase space

description based upon Ashtekar variables [14]. As in the full theory of gravity,

this leads to a significantly different set of strategies for the quantization of

the constraints. This approach was initiated in ref. 16 and some preliminary

results obtained. Neville has developed this approach in some detail for the

plane-wave midisuperspaces [17]. See these references for details.
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Second, one can simply eliminate the diffeomorphism invariance (at the

classical level) using coordinate conditions. In this approach, the constraints

are solved classically and the issues of general covariance, constraint quantiza-
tion, etc., are eliminated from consideration. There is a nice gauge fixing for

the models being considered here based upon the Einstein±Rosen (cylindrical

symmetry) or Gowdy (toroidal symmetry) coordinates. If the dynamics of

the theory are restricted to foliations of spacetime adapted to these coordinate

systems, then the dynamics of the theory are (modulo a few subtleties; see

below) mathematically equivalent to that of a symmetry reduction of a wave
map2 from a flat three-dimensional spacetime to a two-dimensional Rieman-

nian manifold of constant negative curvature. The wave map is provided by

the fields c and c Ä . In this interpretation of the symmetry-reduced, gauge-

fixed theory, the space of orbits MÃis viewed as a symmetry reduction of a

flat three-dimensional spacetime by a one-dimensional group. By completely

fixing the gauge, one can thus turn the quantization problem into the study
of the quantum theory of wave maps on a flat spacetime. This point of view

is the one taken in ref. 18±20. In particular, much progress has been made

for the case where one assumes that the Killing vector fields are hypersurface

orthogonal. This removes one ª polarizationº from the gravitational field and

reduces the wave map to a single free scalar field, which is the Einstein±Rosen
wave amplitude in the cylindrically symmetric case. Because the model has

been reduced, in effect, to a free field theory, one can say quite a bit about

the quantum theory. It is gratifying to be able to extract quantum information

about spacetime geometry in this field-theoretic setting.

While the gauge-fixed quantum theory of the midisuperspace models

has shed new light on possible physical properties of quantum geometry, the
models fail to help us understand the full theory in one important respect.

In the full theory one aspires to formulate the quantization in such a way as

to preserve general covariance. This means one keeps the constraints in the

theory and quantizes the constrained theory aÁ la Dirac [5]. Presumably, the

results obtained for the fully gauge-fixed models arise as a specialization of

the putative gauge-invariant quantum theory. Without the ability to appeal
to a gauge-invariant formulation, it is not clear how to relate the results

obtained via different gauge-fixing methods. Indeed, it is hard to be sure

that the gauge-fixed theory has been quantized in a manner consistent with

general covariance.

A third approach is possible, which still takes advantage of the wave

map nature of the true degrees of freedom, but which preserves general
covariance so as to provide a viable model of Dirac constraint quantization

2 Sometimes also called a ª harmonic map.º The adjective ª waveº is more appropriate in this
context since the field equations are hyperbolic.
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of the full theory. This approach is a generalization of that used by KucharÆ,

and is based upon a canonical transformation that identifies the midisuper-

space model with a parametrized field theory of wave maps. I now describe
this approach in more detail.

A parametrized field theory is a field-theoretic generalization of a famil-

iar construction from mechanics (see, e.g., ref. 35) in which one introduces

a new, arbitrary time parameter t into the system and formally treats the true

time t as a new degree of freedom which evolves in the new time parameter.

Of course, time is not a degree of freedom: the time t is an arbitrary function
of the parameter time, t 5 t( t ). This fact manifests itself in the appearance

of a constraint in the Hamiltonian formulation that identifies the momentum

conjugate to time with (minus) the canonical energy of the system. One can

interpret the appearance of the constraint as reflecting a diffeomorphism

gauge symmetry of the problem associated with the arbitrariness of the new

time parameter t . The generalization of this formalism to field theory is
reasonably straightforward [5, 21, 22]. In field theory, an instant of time is

a Cauchy hypersurface . Given a field theory on a fixed spacetime background,

one can express the theory in terms of an arbitrary foliation of the background

and treat instants of time (Cauchy surfaces) as new dynamical variables. A

Cauchy surface can be determined by giving its embedding in the given
spacetime. For a four-dimensional spacetime, this means that one must specify

four functions of three variables. These four functions, along with their

canonical momenta, are added to the phase space of the field theory to obtain

the parametrized field theory. As in the mechanical case, adding time to the

phase space of the theory also adds constraints to the phase space. Four

functions of the canonical variables must vanish. These constraints take the
following form:

# a (x): 5 P a (x) 1 h a [ f , p , T ](x) 5 0 (3.12)

The notation used in (3.12) is as follows. Coordinates on spacetime are

denoted by T a . An embedding of a Cauchy surface S is given parametri-
cally via

T a 5 T a (x) (3.13)

where x i are coordinates on S . The functions T a (x) are dynamical variables

in the parametrized field theory. Their conjugate momenta are denoted by
P a (x). The true degrees of freedom of the theory are represented by the

canonical variables ( f , p ). The quantities h a [ f , p , T ](x) are the flux of

energy-momentum at the spacetime point T a (x) associated with the Cauchy

surface embedded by T a . In formulas:
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h a 5 ! g n b U a b (3.14)

where U a b is the energy-momentum tensor for the fields ( f , p ), n a is the

timelike unit normal to the hypersurface defined by T a (x), and g ij is the

induced metric on that hypersurface.

As one can see, the constraint (3.12) identifies the variable conjugate
to time (space) with minus the energy (momentum) density of the true

degrees of freedom, in complete analogy with the mechanical version of

the parametrized system. The presence of the constraints in the parametrized

field theory reflects the existence of a four-dimensional diffeomorphism

gauge symmetry for the theory. These constraints are ª first classº ; in fact
the Poisson algebra of the constraints (3.12) is Abelian. This allows one

to make a direct connection between the canonical transformations generated

by the constraint functions and the action of spacetime diffeomorphisms

on the parametrized field theory [22]. The Dirac algebra of hypersurface

deformations is obtained by taking projections of the constraints (3.12)

normally and tangentially to the Cauchy surfaces and computing their
Poisson algebra.

To get a diffeomorphi sm symmetry for a field theory on a fixed back-

ground we have to add variables to the theory, that is, we have to ª parametrizeº

the theory to make it generally covariant. Of course, in general relativity

these variables are, in some sense, already there, and one often calls general

relativity an ª already parametrized field theory.º Unlike the case with an
already parametrized theory such as general relativity, when parametrizing

a field theory on a fixed background spacetime the constraints that appear

have a very simple structure. They indicate explicitly that four canonical

pairs are not truly dynamical. Moreover, the constraint functions generate

the dynamical evolution of the true degrees of freedom as one deforms the

embedding upon which the degrees of freedom are being measured. This
leads to a natural approach to Dirac constraint quantization of a parametrized

field theory. The embedding momenta are defined as variational derivative

operators with respect to the embeddings X a (x), and one must define the

quantum energy-momentum flux as a self-adjoint operator on a Hilbert space

of states for the true degrees of freedom. The quantum constraints then, at
least formally, constitute a functional SchroÈ dinger (or Tomonaga ±

Schwinger) equation

1 1

i

d
d T a 1 h a 2 | C & 5 0 (3.15)

which defines the dynamical evolution of the state vector | C & along an

arbitrary foliation of spacetime.
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We have remarked that by gauge fixing the midisuperspace models

one ends up with a (symmetry reduction) of a field theory of wave maps

on a flat spacetime. Such a field theory can be made generally covariant
by the parametrization process sketched above, and it is natural to ask if

this parametrized field theory has anything to do with the ª already

parametrizedº midisuperspace model. The answer is affirmative. By general-

izing KucharÏ ’ s treatment of Einstein±Rosen waves, it is possible to identify

the cylindrical and/or toroidal midisuperspace models with parametrized

field theories of a one-dimensional symmetry reduction of wave maps
from a flat three-dimensional spacetime to a two-dimensional Riemannian

manifold of constant negative curvature. More precisely, given a slight

modification of the phase spaces for the midisuperspace models being

discussed (see the remark below), there exist canonical transformations

identifying these models with parametrized field theories of wave maps

[12]. Thus the constraints (3.10) and (3.11) of the toroidal or cylindrical
midisuperspaces can be expressed in the parametrized field theory form

(3.12), and a clear strategy for implementing these constraints in quantum

theory is thus available. This strategy for quantization was explored by

KucharÆ[3], albeit at a rather formal level, for Einstein-Rosen waves.

Teitelboim proposed that this same strategy could be used to formulate
the canonical quantization of the full theory [23]. Limitations on this

approach are discussed in ref. 24.

To use these results to implement Dirac constraint quantization of

the midisuperspaces being discussed here we must be able to construct

a quantum field theory on a fixed (indeed, flat) spacetime that allows for

dynamical evolution along arbitrary foliations of spacetime. Only relatively
recently have results on the possibility of doing this become available.

We will take up this issue in the next section.

Remark. To make a rigorous identification of the midisuperspace

models with a parametrized field theory, one must extend slightly the

definition of the phase space for the midisuperspace models. The reason
for this is that one is aspiring to use the intrinsic and extrinsic geometry

of a hypersurface (the geometric interpretation of the gravitational phase

space variables) to define how that hypersurface is embedded in spacetime.

As it happens, the geometry of a hypersurface is not quite adequate to

determine its embedding into spacetime. One must add a single variable

to the phase space of the cylindrical symmetry model, and a pair of
variables must be added to the toroidal symmetry model to allow for the

identification with a parametrized field theory of wave maps. In the

toroidal symmetry case there is also a single extra constraint that augments

the usual constraints (3.12) of the parametrized field theory. The meaning
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of this constraint is that the total momentum for the wave maps must

vanish. For details on all this, see ref. 12.

4. QUANTIZATION ON CURVED SURFACES

Let us summarize the discussion of the last section. Cylindrically sym-

metric and toroidally symmetric midisuperspace models of vacuum gravity

are mathematically described by (a symmetry reduction of) parametrized

field theories of wave maps on a flat spacetime. This allows us to turn the
problem of Dirac constraint quantization of the midisuperspace models into

that of finding a quantization of fields on a fixed background spacetime that

allows for dynamical evolution along an arbitrary foliation of spacetime by

Cauchy surfaces.

Remarkably, in the same 1964 monograph [5] in which Dirac described

his methods for handling constrained Hamiltonian systems, he also considered
the problem of canonically quantizing a field theory on Minkowski spacetime

such that one could consistently evolve the state of the system from one

arbitrary spacelike hypersurface to another. He called this the problem of

ª quantization on curved surfaces.º He formulated the problem in terms of

the associated parametrized field theory and indicated that, in general, one
could expect difficulties with consistency due to factor ordering problems in

the quantum constraints (3.15).

As far as I can tell, it took over 20 years before an example of quantization

on curved surfaces was worked out in any detail. I have in mind the work

of KucharÏ in [25], followed by work of Varadarajan and myself [26], which

considers the problem in the context of a free scalar field theory on a flat
two-dimensional background. The problem is already rather interesting (and

has only been explored) for free fields, so let me try to describe what is

going on in that case only.

Let us first consider classical time evolution for a free field w on a

globally hyperbolic spacetime (M, g). The evolution is determined by the

field equations, which we write as

D ( w ) 5 0 (4.1)

where D is a linear differential operator, e.g., w is a scalar field and

D 5 ¹ a ¹ a 2 m2 is the Klein±Gordon operator. Denote by 6 the space

of solutions to (4.1) with appropriate boundary conditions, say, compactly

supported Cauchy data on any Cauchy surface S . Denote by G the space of
Cauchy data for (4.1). Because the Cauchy problem is well-posed, there is

for each Cauchy surface S an isomorphism e: G ® 6 which takes Cauchy

data on that surface and yields the unique solution to (4.1) with those data.

The inverse, e 2 1: 6 ® G , takes a solution and yields its Cauchy data on S .
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Assuming that the free field has no gauge symmetries, there will exist a

(weak) symplectic form on the space of solutions, that is, a skew-bilinear,

nondegenerate map V : 6 3 6 ® R. Given a Cauchy surface, the symplectic
form on 6 can be pulled back to G using e to define a symplectic form v :

G 3 G ® R:

v 5 e* V (4.2)

It can be shown that v is independent of the choice of Cauchy surface used
to define e. Either of the symplectic vector spaces (6, V ) or ( G , v ) can be

viewed as the phase space for the free field theory.

In order to discuss dynamics, we consider evolution from some initial

time to some final time. Let us therefore fix an initial Cauchy hypersurface

S 1 and a final Cauchy hypersurface S 2. Associated with every such pair

of instants of time there are maps e1 and e2 from G to 6 and there is
an isomorphism

712: 6 ® 6 (4.3)

given by

712 5 e1 + e 2 1
2 (4.4)

Given a solution to (4.1), i.e., a point in 6, the linear map 612 takes its

Cauchy data on S 2 and yields the solution that has these data on S 1. This

mapping can be viewed as ª time evolutionº from S 1 to S 2 as represented on

the space of solutions. To see what this time evolution means in terms of

evolution of Cauchy data, let us use the isomorphism e1 associated with the
initial surface to identify G and 6. Using this identification, we can view the

mapping 612 as an isomorphism t 12: G ® G given by

t 12: 5 e 2 1
1 + 712 + e1 5 e 2 1

2 + e1 (4.5)

The map t 12 defines dynamical evolution on G by taking data on the initial
surface, evolving it into a solution of (4.1), and then yielding the new data

on the final surface.

Whether viewed as a map on 6 or on G , time evolution preserves the

respective symplectic structure:

7*12 V 5 V , t *12 v 5 v (4.6)

This is, of course, just the familiar result for Hamiltonian systems that ª time
evolution is a canonical transformationº . The problem of quantization on

curved surfaces can be viewed as the problem of transporting the classical

dynamical structure just described to the quantum description of the field

theory.



1098 Torre

Wald gives a very general prescription for constructing a Fock space

quantization of a linear field in a globally hyperbolic spacetime [27]. The

key step is the construction of the one-particle Hilbert space, from which the
Fock space ^ is constructed in the usual way. The possible choices of one-

particle Hilbert space correspond to choices of a (suitable) inner product on

the symplectic space (6, V ) (or ( G , v )). Given an inner product on 6, one

obtains the Fock space ^ and (densely defined) field operators F ( w ), labeled

by elements of 6, satisfying the CCR algebra

[ F ( w 1), F ( w 2)] 5 2 i V ( w 1, w 2) (4.7)

Dynamical evolution from S 1 to S 2 in the Heisenberg picture corresponds

to the algebra automorphism

712 ? F ( f ): 5 F (7 2 1
12 ? w ). (4.8)

Normally, one expects that dynamical evolution is implemented by a unitary

transformation U12: ^ ® ^, such that

U 2 1
12 F U12 5 712 ? F (4.9)

Assuming this is the case (but see below), given a state | c . prepared at the

time defined by S 1, we can define the state at time S 2 (in the SchroÈ dinger
picture) as U12 | c . . The Tomonaga±Schwinger equation (3.15), at least for-

mally, describes the change in U12 | c . as the surface S 2 is deformed in

spacetime. One can therefore use U12 to define the ª physical statesº in the

Dirac constraint quantization of parametrized field theory. In detail, fix once

and for all an initial surface S 0. Choose a state | c 0 . in the Fock space and

apply the unitary transformation corresponding to evolution from S 0 to an
arbitrary final surface S . The result can be viewed as a S -dependent state

satisfying (formally) the constraints (3.15). This ª physical stateº is determined

by its value | c 0 . on the initial surface, and all physical states arise by varying

the choice of | c 0 . . Of course, what I have described is just a ª many-fingered

timeº generalization of the standard approach to solving the SchroÈ dinger

equation. Insofar as parametrized field theories accurately model already
parametrized theories such as general relativity, we can interpret the Wheeler±

DeWitt equation as a SchroÈ dinger equation in disguise and try to find the

physical quantum states using the approach just described.

Unfortunately, unitary implementability of the symplectic transformation

712 is not guaranteed. It is well known that not all canonical transformations

can be unitarily implemented in quantum mechanics. In quantum field theory
the presence of an infinite number of degrees of freedom can even prevent

unitary implementability of linear canonical transformations, such as we are

considering here [29]. Failure of unitary implementability of time evolution

is not unheard of in the context of quantum field theory in a nonstationary
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curved spacetime [27], where it is usually associated with infinite particle

production by the gravitational field. However, there the whole issue is

complicated by the fact that the fields are interacting with a prescribed
gravitational field and, in general, there is no preferred quantization of the

classical theory. A much simpler situation one might consider is that of free

fields in flat spacetime; there is then a timelike Killing vector field that defines

a preferred inner product on 6 and a consequent preferred quantization. Of

course this is precisely the setting one finds oneself in when considering the

simplest of the midisuperspace models described in the previous section.
Following the lead of KucharÏ [25], Torre and Varadarajan [26] consider

unitary implementability of dynamical evolution along arbitrary foliations,

as well as the definition and solution of the quantum constraints (3.15), for

a free scalar field propagating on a flat two-dimensional spacetime. Let me

now summarize some of the salient results.

The quantum theory for a free, massless scalar field on a flat, cylindrical
spacetime is defined in the standard way. Unitary implementability of the

transformation 712 can be verified for S 1 and S 2 being any Cauchy surfaces

(actually, Cauchy circles). It is possible to construct the unitary transformation

explicitly and check the status of the putative quantum constraint (3.15). Let

T: S1 ® R 3 S1 be an embedding of a Cauchy surface. We consider the
image | C (T ) . of the unitary map taking any initial state on any initial

Cauchy surface to the surface embedded by T. We find that this state vector

satisfies a quantum constraint of the form [26]

1 1

i

d
d T a 1 h a 1 A a [T ] 2 | C (T ) . 5 0 (4.10)

Here h a is the normal-ordered (with respect to the usual vacuum) energy-

momentum current density in the SchroÈ dinger picture. The term A a is a

multiple of the identity operator, which depends on the embedding T; thus

this term is a ª time-dependent c-number.º Based upon general arguments

that take into account the Schwinger terms in the algebra of energy-momentum
tensor components, KucharÏ proposed that the quantum constraints for this

model should have such a term, and our direct computation verifies this

proposal. Thus there is a ª quantum correctionº to the classical constraints,

which is an interesting phenomenon to encounter in such a simple model.

Other, related models one can consider are obtained by adding a mass

to the scalar field and/or changing the topology of the spacetime to R2.
Adding a mass does not alter the unitary implementability of the ª many-

fingered timeº dynamical evolution. Allowing the Cauchy surfaces to be

noncompact requires asymptotically (extrinsically) flat Cauchy surfaces to

be used in order to guarantee unitary evolution in the massive case. Massless
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fields on R2 lead to the usual infrared difficulties, and have not been explored

as yet. Presumably, these results can be generalized to any free fields in two

spacetime dimensions. Aside from the technical difficulty with massless fields
on R2, it appears that the problem of quantization on curved surfaces is

satisfactorily solved for free fields in two spacetime dimensions.

It is now tempting to suppose that these results have a straightforward

generalization to free field theories on higher dimensional flat spacetimes.

However, in quantum field theory it seems that nothing should be taken for

granted. If S 1 and/or S 2 are suitably generic, the symplectic transformation
representing dynamical evolution will not be unitarily implementable. A

sketch of this result is given in ref. 26; details will appear in the near

future [28]. The situation is rather like the Van Hove obstruction to unitary

implementability of the group of canonical transformations [30]. In quantum

mechanics it is well known that only a subset of the canonical transformations

can be represented as unitary transformations on a Hilbert space. For a free
field theory on flat spacetime one can unitarily implement dynamical evolu-

tion between Cauchy surfaces related by an action of the PoincareÂgroup,

but more general transformations are not supported by the Fock space. The

problem seems to be that the group of hypersurface deformations for a free

field does not have a unitary representation on the standard free-field Fock
space except for two-dimensional spacetimes. For two-dimensional field theo-

ries, the many-fingered time evolution can be viewed as an action of the

conformal group on spacetime [31]. The conformal group for a two-dimen-

sional spacetime is, in turn, built from a pair of one-dimensional diffeomorph-

ism groups, which have unitary representations on Fock space [32], at least

for free fields. In higher dimensions this simple picture is simply not available.
Thus Dirac’ s problem of quantization on curved surfaces remains an open

problem for free fields on a flat spacetime of dimension greater than two.

By this I mean that it is not known how to find a Hilbert space representation

of the CCR that allows for unitary dynamical evolution along arbitrary folia-

tions and which reduces to the usual dynamical evolution when using folia-

tions by flat hypersurfaces. It is worth noting that there seems to be no
obstruction to quantization on curved surfaces using the more general

approach provided by the apparatus of algebraic quantum theory (see refs.

33 and 27 for a description of this approach to quantum field theory).

At this point it is appropriate to recall the motivation for our discussion

of quantization on curved surfaces, that is, quantization of parametrized field

theories. We were able, classically, to view the two-Killing-vector midisuper-
spaces as the parametrization of field theories on a flat three-dimensional

spacetime. It is then natural to try to define the ª Wheeler±DeWitt equationº

as the functional SchroÈ dinger equation (3.15). We saw that quantization of

parametrized fields in spacetime dimensions three and higher is problematic;
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what is to be done about the quantization of these midisuperspace models aÁ

la Dirac? This question is made more interesting by the fact that the reduced

field theories for these models, while naturally viewed as symmetry reductions
of three-dimensional theories, are in effect two-dimensional theories. Is it

possible that these models are just two-dimensional enough in their behavior

to allow the quantization via parametrized field theory? Recent work of

Varadarajan suggests that this is the case [34]. Work is in progress on this issue,

and I hope that soon we will know whether the quantization of midisuperspace

models of canonical quantum gravity proposed in refs. 3 and 12 is possible.
If so, results such as those of refs. 18±20 can be viewed as arising from a

generally covariant canonical quantization of the gravitational field, and these

models can shed light on the nature of quantum geometry in the framework

of Dirac’ s quantization of constrained systems.
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